Дата: 15.04.2022г. Группа ООП 2/1

ЛЕКЦИЯ

Тема: Санитарно - гигиенические требования к кулинарной обработке пищевых продуктов

План

- 1. Блюда и изделия повышенного эпидемиологического риска, санитарные требования к их приготовлению
- 2. Санитарные правила применения пищевых добавок. Перечень разрешенных и запрещенных добавок

Цель: познакомиться с санитарными требованиями к процессам механической кулинарной обработки продовольственного сырья; способами и режимами тепловой обработки продуктов и полуфабрикатов.

- ОК 1 Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OК 2 Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3 Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4 Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5 Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6 Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- OК 7 Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
- ОК 8 Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9 Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
- ПК 1.1. Организовывать подготовку мяса и приготовление полуфабрикатов для сложной кулинарной продукции.

- ПК 1.2. Организовывать подготовку рыбы и приготовление полуфабрикатов для сложной кулинарной продукции.
- ПК 1.3. Организовывать подготовку домашней птицы для приготовления сложной кулинарной продукции.
- ПК 2.1. Организовывать и проводить приготовление канапе, легких и сложных холодных закусок.
- ПК 2.2. Организовывать и проводить приготовление сложных холодных блюд из рыбы, мяса и сельскохозяйственной (домашней) птицы.
- ПК 2.3. Организовывать и проводить приготовление сложных холодных соусов
 - ПК 3.1. Организовывать и проводить приготовление сложных супов.
- ПК 3.2. Организовывать и проводить приготовление сложных горячих соусов.
- ПК 3.3. Организовывать и проводить приготовление сложных блюд из овощей, грибов и сыра.
- ПК 3.4. Организовывать и проводить приготовление сложных блюд из рыбы, мяса и сельскохозяйственной (домашней) птицы.
- ПК 4.1. Организовывать и проводить приготовление сдобных хлебобулочных изделий и праздничного хлеба.
- ПК 4.2. Организовывать и проводить приготовление сложных мучных кондитерских изделий и праздничных тортов.
- ПК 4.3. Организовывать и проводить приготовление мелкоштучных кондитерских изделий.
- ПК 4.4. Организовывать и проводить приготовление сложных отделочных полуфабрикатов, использовать их в оформлении.
- ПК 5.1. Организовывать и проводить приготовление сложных холодных десертов.
- ПК 5.2. Организовывать и проводить приготовление сложных горячих десертов.
- ПК 6.1. Участвовать в планировании основных показателей производства.
 - ПК 6.2. Планировать выполнение работ исполнителями.
 - ПК 6.3. Организовывать работу трудового коллектива.
- ПК 6.4. Контролировать ход и оценивать результаты выполнения работ исполнителями.
 - ПК 6.5. Вести утвержденную учетно-отчетную документацию

Литература

- 1. Т.А. Лаушкина Основы микробиологии, физиологии питания, санитарии и гигиены: учебник для студ. среднего проф.образования/ Т.А. Лаушкина.- 2 -е изд., стер. М.: издательский центр «Академия», 2018.- 240с.
- 2. Матюхина, 3. П. Основы физиологии питания, микробиологии, гигиены и санитарии [Текст]: учебник / 3. П. Матюхина. 8-е изд., стереотип. Москва: Академия, 2015. 256 с.
 - 3. Мармузова, Л. В. Основы микробиологии, санитарии и гигиены в

пищевом производстве [Текст]: учебник / Л. В. Мармузова. - 3-е перераб. и доп. – Москва: Академия, 2013. - 160 с.

- 4. Рубина Е.А. Санитария и гигиена питания: Учеб. пособие для студ. высш.учеб. заведений / Елена Александровна Рубина. М.: Издательский центр «Академия», 2015. 288 с.
- 5. О безопасности и качестве пищевых продуктов [Электронный ресурс]: закон Донецкой Народной Республики 8 апреля 2016 года №120-IHC: действующая редакция по состоянию на 12.09.2020г. Режим доступа: https://dnrsovet.su/zakonodatelnaya-deyatelnost/prinyatye/zakony/zakon-donetskoj-narodnoj-respubliki-o-bezopasnosti-i-kachestve-pishhevyh-produktov/.
- 6. Об обеспечении санитарного и эпидемического благополучия населения [Электронный ресурс]: закон Донецкой Народной Республики № 40-IHC от 10.04.2015г.: действующая редакция по состоянию на 16.03.2020г.—Режим доступа:

https://dnrsovet.su/zakon-dnr-ob-obespechenii-sanitarnogo-i-epidemicheskogo-blago poluchiya-naseleniya/.

7. Об утверждении Правил оказания услуг общественного питания [Электронный ресурс]: приказ Министерства промышленности и торговли Донецкой Народной Республики от 07.05.2018г. № 63: действующая редакция по состоянию на 03.06.2019г. – Режим доступа: https://gisnpa-dnr.ru/npa/0028-63-20180507/.

1. Блюда и изделия повышенного эпидемиологического риска, санитарные требования к их приготовлению

Холодные блюда и закуски приготавливают из различных сырых и прошедших тепловую обработку продуктов с использованием свежей зелени петрушки, укропа, салата. Процесс приготовления блюд довольно длительный (включает нарезку, перемешивание, заправку, оформление) и проходит без последующей тепловой обработки продуктов.

Все эти факторы создают благоприятные условия для вторичного обсеменения холодных блюд патогенными микроорганизмами, что может вызвать пищевые отравления и острые кишечные инфекции у потребителей.

Для предупреждения инфицирования холодных блюд и закусок в процессе приготовления необходимо строго соблюдать санитарные правила:

- 1. Приготавливать холодные овощные, мясные, рыбные блюда и закуски, бутерброды и сладкие блюда на разных рабочих местах.
- 2. Строго соблюдать маркировку разделочных досок, ножей и инструментов, организуя их мытье и хранение в этом же цехе.
- 3. Отварные овощи, нарезанные для салатов, винегретов, гарниров к холодным мясным и рыбным блюдам, хранить порознь при температуре от 2 до 6 °C, картофель -12 ч, морковь, свеклу -18 ч.

- 4. Салаты, винегреты в заправленном виде хранить не более 1 ч при температуре 2 ... 6°С, в незаправленном виде 6 ч.
- 5. Мясные, рыбные гастрономические изделия зачищать заранее, хранить при температуре от 2 до 6 °C. Нарезают их на чистом рабочем месте только по мере необходимости перед отпуском блюд и бутербродов.
- 6. Заливные мясные, рыбные блюда, студни, паштеты готовить с соблюдением санитарных правил, хранить при температуре от 2 до 6°C 12 ч.
- 7. В процессе приготовления, оформления холодных блюд и закусок следует меньше касаться продуктов руками, используя для нарезки различные машины, а для перемешивания и оформления инвентарь, инструменты, специальные резиновые перчатки.

При использовании традиционных технологий изготовления изделий во фритюре применяется только специализированное технологическое оборудование. При этом проводится производственный контроль качества фритюрных жиров.

Ежедневно до начала и по окончании жарки проверяют качество фритюра по органолептическим показателям (вкусу, запаху, цвету). При наличии резкого, неприятного запаха, горького, вызывающего неприятное ощущение, першения, привкуса и значительного потемнения дальнейшее использование фритюра не допускается.

После 6-7 ч. жарки жир сливают из фритюрницы, фритюрницу тщательно очищают от крошек, пригаров жира и крахмала. Остаток жира отстаивают не менее 4 ч., отделяя от осадка (отстоя), затем после органолептической оценки используют с новой порцией жира для дальнейшей жарки. Осадок утилизируют.

Повторное использование фритюра для жарки допускается только при условии его доброкачественности по органолептическим показателям и степени термического окисления.

Фритюр, не пригодный для дальнейшего использования, подлежит сдаче на промышленную переработку.

2. Санитарные правила применения пищевых добавок. Перечень разрешенных и запрещенных добавок

Пищевые добавки — вещества, преднамеренно вносимые в пищевые продукты в небольших количествах с целью улучшения их внешнего вида, вкуса, аромата, консистенции или для придания им большей стойкости при хранении.

Использование пищевых добавок не должно увеличивать степень риска возможного неблагоприятного действия продукта на здоровье потребителя, а также снижать питательные свойства пищевых продуктов.

Не допускается применение пищевых добавок для сокрытия порчи или недоброкачественности сырья или готового продукта.

Использование пищевых добавок на отдельных предприятиях начинается местных органов государственного санитарного Администрация предприятия до начала применения пищевой добавки должна информировать местную санитарно-эпидемиологическую станцию предстоящем добавки внедрении В производство, предоставить соответствующее разрешение Министерства здравоохранения регламентирующие документы.

Постоянный (текущий) контроль за правильным применением пищевых добавок на предприятии, их качеством, содержанием в пищевых продуктах возлагается на технологическую службу предприятия и производственную лабораторию.

Наличие пищевых добавок в продуктах, как правило, должно указываться на потребительской упаковке в разделе рецептуры.

Пищевая добавка обозначается либо как индивидуальное вещество, например: нитрит натрия, сорбиновая кислота, лецитин и т.д.; либо групповым названием, например: эмульгатор, консервант, синтетические красители, ароматическая эссенция и т.д..

Список пищевых добавок, разрешенных для использования при производстве пищевых продуктов или для продажи населению, подлежит систематическому пересмотру не реже 1 раза в пять лет с учетом текущей информации.

Классификация пищевых добавок:

Е100- Е182 - красители, усиливают или восстанавливают цвет продукта.

E200- E299 - консерванты, увеличивают срок хранения продуктов, защищая их от микробов и грибков.

Е300 - Е399 - антиокислители, защищают продукты от окисления.

E400 - E499 - стабилизаторы, сохраняют необходимую консистенцию продуктов.

Е500 - Е599 - эмульгаторы, создают однородную смесь.

Е600 - Е699 - усилители вкуса и аромата.

Е700 - Е800 - запасные индексы.

Е900 - Е999 - пеногасители, предупреждают или снижают образование пены, придают продуктам приятный внешний вид.

Глазирователи, подсластители, разрыхлители, регуляторы кислотности входят во все указанные группы, кроме того и в новую группу Е1000.

Чтобы придать пищевым продуктам требуемую консистенцию или улучшить ее, применяют пищевые добавки, изменяющие их реологические свойства. Ассортимент веществ, улучшающих консистенцию, достаточно широк - это загустители, гелеобразователи, пищевые поверхностно-активные вещества (ПАВ), а также стабилизаторы физического состояния и разрыхлители. Химическая природа этих веществ разнообразна.

Улучшители консистенции применяют преимущественно в производстве пищевых продуктов, имеющих неустойчивую консистенцию и гомогенную структуру. Такие продукты, как, например, мороженое или мармелад, сыры или

колбасы, при использовании в технологии их производства указанных пищевых добавок приобретают качественно более высокие показатели

Пектиновые вещества (Е 440) – улучшители консистенции, загустители, уплотнители, гелеобразователи, стабилизаторы и эмульгаторы.

Пектиновые вещества представляют собой высокомолекулярные - полисахариды, входящие в состав клеточных стенок и межклеточных образований совместно с целлюлозой, теми целлюлозой и лигнином. В понятие «пектиновые вещества» входят гидратопектин (растворимый пектин), протопектин (нерастворимый в воде пектин), пектиновые кислоты и пектина, пектовые кислоты и пектаты.

Крахмал и модифицированные крахмалы (Е 1402).

Среди природных полимеров в пищевой технологии самыми дешевыми и доступными являются крахмалы. Крахмал - полимер глюкозы с большинством связей по 1-му и 4-му углеродным атомам. При этом образуется линейный полимер амилоза, который не имеет боковых цепей, и разветвленный полимер амилопектин с боковыми цепями.

В последние годы в пищевой промышленности все больше применяют модифицированные крахмалы, свойства которых в результате разнообразных способов обработки (физического, химического, биологического) заметно отличаются от свойств обычного крахмала. Так, модифицированные крахмалы существенно отличаются от обычного крахмала по степени гидрофильности, способности к клейстеризации и гелеобразованию. Модифицированные крахмалы используют в хлебопекарной и кондитерской промышленности, в том числе и для получения безбелковых диетических продуктов питания.

Целлюлоза. В пищевой технологии находят применение целлюлоза и ее производные: микрокристаллическая целлюлоза (Е 460), метил целлюлоза (Е 461), карбоксиметилцеллюлоза (Е 466), гидроксипропилцеллюлоза (Е 463), гидроксипропилметшшеллюлоза (Е 464), метилэтилцеллюлоза (Е 465). Эти пищевые добавки используют в производстве мороженого, кондитерских изделий и соусов. Производные целлюлозы применяют в качестве диетических волокон при создании сбалансированных продуктов питания. Они являются также эффективными загустителями, стабилизаторами и эмульгаторами.

Камеди. Из растительных структурообразователей полисахаридной природы, получаемых из семян, промышленное значение имеют камедь из бобов рожкового гуаровая дерева, камедь, таро камедь др. Структурообразователи этой группы являются галактоманнанами, полисахаридные структуры состоят из маннозных остатков, соединенных между собой.

Хитозан. Это вещество является производным природного целлюлозоподобного биополимера, относящегося к классу полисахаридов хитина. Хитин, так же как и целлюлоза, широко распространен в природе, в входит в состав опорных тканей И внешнего скелета частности он ракообразных, насекомых, микроорганизмов.

Полисахариды микробиологического происхождения. Многие виды микроорганизмов в процессе жизнедеятельности выделяют камеди, состоящие в основном из полисахаридов. К ним относятся ксантан (Е 415) и геллан (Е 417).

Ксантан впервые был получен в конце 50-х годов и стал производиться в промышленных масштабах с 1964 г. Ксантан образуется в результате брожения культуры Xanihomonas eampesrris в углеводных растворах, служащих питательной средой для микроорганизмов.

Желатин - белок животного происхождения, в его составе присутствует смесь полипептидов с молекулярной массой 50 000...70 000, а также их агрегаты. Получают желатин из хрящей, сухожилий и костей сельскохозяйственных животных. Желатин хорошо растворяется в горячей воде, а при охлаждении водные растворы образуют гели.

Казеин. Известно, что белки молока представлены в основном казеином (80...83%) и сывороточными белками. Казеин получают путем его осаждения из обезжиренного молока при изоэлектрической точке — рН 4,6 и температуре 20 °C. зависимости OT вида осадителей выпускают солянокислый, молочнокислый, хлорокальциевый и другие виды казеина, различающиеся функциональными свойствами. Однако все казеина способны виды образовывать гели.

В пищевой технологии казеин используют как эмульгатор и загуститель для производства майонезных соусов и кондитерских желейных изделий.

Эмульгаторы - это вещества, уменьшающие поверхностное натяжение на границе раздела фаз, поэтому их добавляют к пищевым продуктам для получения тонкодисперсных и устойчивых коллоидных систем. В частности, с помощью таких добавок создают эмульсии жира в воде или воды в жире.

Принцип действия стабилизаторов такой же, как и эмульгаторов. Целью их применения является стабилизация уже существующих гомогенных систем или же улучшение степени гомогенизации смесей. Их поверхностная активность обычно меньше активности эмульгаторов

Лецитин (**E** 322) входит в группу фосфолипидов, содержащихся в растительных маслах. Лецитины получают в основном из растительных масел подсолнечного, соевого, рапсового и применяют в пищевой промышленности преимущественно как эмульгаторы. Хорошие эмульгирующие свойства их - это следствие комбинации липофильных и гидрофильных групп в молекулах.

Фосфолипиды синтезируются в организме животных и человека. Установлено, что введение лецитина в рацион питания человека в течение длительного времени не сопровождается какими-либо неблагоприятными последствиями. Объединенным комитетом экспертов ФАО/ВОЗ по пищевым добавкам установлено, что, безусловно, допустимой дозой для человека является до 50 мг (в дополнение к ежедневному приему при обычном рационе) и условно допустимой 50... 100 мг на 1 кг массы тела. Принято считать, что средний пищевой рацион взрослого человека содержит 1...5 г лецитина.

Лецитин применяется при производстве хлеба, мучных кондитерских изделий, конфет, шоколада, напитков, мороженого, сухого молока.

Жирные кислоты и их соли (Е 481 - Е 482). В пищевой промышленности в качестве эмульгаторов применяют свободные жирные кислоты - олеиновую, стеариновую, пальмитиновую и их натриевые, калиевые, кальциевые соли в производстве хлебобулочных и кондитерских изделий в концентрации до 5 г на 1 кг массы продуктов.

Моно - и диацилглицеролы жирных кислот (Е 471). Их применение в шоколадном производстве позволяет экономить масло какао, а в маргариновом - получать низкожировые маргарины с содержанием жировой фазы 40...50%. В производстве маргарина применяют эмульгатор Т-8 - смесь эмульгатора Т-1 и фосфолипидных концентратов.

Спирты жирного Алифатические ряда. спирты отондиж ряда, жирных получаемые соответствующих кислот, отчасти являются ИЗ естественными компонентами жиров. В большинстве случаев это стеариновые и олеиловые спирты. Они применяются непосредственно или в виде сложных эфиров уксусной, молочной, фумаровой, яблочной, лимонной и других кислот в качестве стабилизаторов при изготовлении печенья. К таким пищевым добавкам относят, например, ацилированный моноацилглицерол (Е 4721), малат-эфир (Е472с), стеароилмолочная кислота (Е484), олеиллактилат натрия (Е 481п), олеиллактилат кальция (Е 482н) и др. Области применения добавок этой группы Ацилированный моноацилглицерол - эфир моноглицерола и уксусной кислоты и малат-эфир - эфир моноглицерола и яблочной кислоты используются в хлебопечении, сахарной промышленности и при производстве мороженого. Стеароилмолочная кислота - производное молочной кислоты с высшими жирными кислотами и ее натриевая соль -стеароиллактилат натрия используются в пищевой промышленности в качестве поверхностно-активного вещества для маргаринов и других продуктов.

Применение этих пищевых добавок разрешено без ограничения.

Сложные эфиры жирных кислот и сахаров. Этерификация сахаров (сахарозы, глюкозы) и сорбитов (сорбитангидрида) жирными кислотами дает группу эмульгаторов с широким диапазоном поверхностно-активных свойств. Их комбинируют с полиоксиэтиленами (полиэтилен гликолиевыми эфирами), в результате чего получают эмульгаторы с измененными эмульгирующими свойствами. Наиболее известны эмульгаторы этой группы - так называемые спэны и твины.

Спэны - это сложные эфиры жирных кислот с сорбитами, а твины - это спэн-эмульгаторы, в которых гидроксильные группы полностью или частично замещены группами О - (CH,- CH, - O)n - H.

Эфиры сахарозы и жирных кислот (Е 473) применяются в производстве мороженого хлебопечении. Сорбитан кондитерских изделий, И В сорбитан моностеарат-СПЭН 60 (E491), тристеарат (E492),монолаурат - СПЭН 20 (Е 493), сорбитан моноолеат-СПЭН 80 (Е 494),сорбитан триолеат - СПЭН 85 (Е 496). ТВИН 20 ТВИН 40, ТВИН 60, ТВИН 80 (Е432 -Е435) применяют при изготовлении жировых эмульсий, шоколада, печенья, кондитерских изделий, мороженого сухого ИЗ молока, **РИЧНОГО** какао-порошков, а также для улучшения растворимости кофе.

Добавка сложных эфиров сахарозы, сорбита и жирных кислот в пищевые жиры ограничена до 20 г/кг продукта, а добавка сложных эфиров сахарозы в маргарин не должна превышать 10 г/кг.

В России применение пищевых добавок СПЭН 60(Е491), сорбитан тристеарата (Е 492), СПЭН 20 (Е 493), СПЭН 80 (Е 494), СПЭН 40 (Е 495), СПЭН 85 (Е 496) не разрешено. Эфиры сахарозы и жирных кислот - разрешенная пищевая добавка в России и странах Европейского Союза, за исключением Германии.

Экстракт мыльного корня - это классический стабилизатор пены.

Однако в мыльном корне содержатся сапонины, обладающие токсическими свойствами, в связи с чем в нашей стране его использование в пищевой промышленности, в частности в кондитерской и при производстве безалкогольных напитков, не разрешается.

Исключением является только производство халвы, при обработке измельченных масличных семян и карамельной массы для которой допускается использовать этот экстракт.

Фосфаты (Е 450 — Е 452). В производстве пищевых продуктов используют как нейтральные, так и кислые моно-, ди-, три- и высшие полифосфаты. Наиболее широко применяют фосфаты в качестве стабилизаторов влагоудерживающей способности колбасного фарша, мяса рыбы и беспозвоночных.

Лимитирующим показателем безвредности данной группы веществ состояние почек, В которых могут наблюдаться кальцификации в результате избыточного поступления фосфатов с пищей. Исходя из этого, а также с учетом общего поступления фосфатов в организм, так как они представляют собой естественные компоненты основных пищевых продуктов (мяса, молока, яиц, зерновых, овощей, фруктов), Объединенным комитетом экспертов ФАО/ВОЗ по пищевым добавкам рекомендована величина максимального поступления фосфатов в организм человека, в том числе в виде пищевой добавки, равная 70 мг на I кг массы тела (в пересчете на фосфор). Этот уровень отнесен к рациону с достаточным содержанием кальция. Если же кальция рационе уровень содержание В повышено, TO И фосфатов соответственно может быть увеличен. В России в производстве плавленых сыров применяются соли-плавители в количестве 20...25 г/кг сырья, из них фосфатов в пересчете на фосфорный ангидрид около 9 г. В вареные колбасы разрешается добавлять смесь фосфатов в пересчете на фосфорный ангидрид в количестве не более 4 г/кг продукта.

Контрольные вопросы

- 1. Какие санитарные правила необходимо строго соблюдать для предупреждения инфицирования холодных блюд и закусок в процессе приготовления?
- 2. Какие санитарные правила предъявляются к фритюрным жирам?

- 3. Что такое пищевые добавки?
- 4. Как классифицируют пищевые добавки?
- 5. Какие санитарные требования предъявляются к пищевым добавкам?
- 6. Исследовательское задание: найдите в своем доме пищевые добавки, определите к какой группе они относятся. С какой целью вы их применяете?

Домашнее задание (выполнять обязательно!)

- 1. Изучить Санитарно-эпидемиологические требования к организациям общественного питания, изготовлению и оборотоспособности в них пищевых продуктов и продовольственного сырья 2.3.6.1079-01 https://files.stroyinf.ru/Data2/1/4294846/4294846955.pdf
 - 2. Дайте ответы на контрольные вопросы

Выполненное задание прислать на адрес электронной почты mikrobio 2021@mail.ua или вайбер 095-1522766 15.04.2022 г. до 17.00 ч.