Monte-Carlo samples for FCC-ee studies, Q1 2021

General conditions:

- Delphes samples, using the IDEA trkCov card
 - Default beam-pipe : still R = 1.5 cm
- Beam-energy spread (BES) ON [when possible]
- Vertex smearing on

Monte-Carlo programs:

- Dedicated programs (e.g. from LEP times), state-of-the-art on the theoretical side
 - KKMC, BHLUMI produce LHE events
 - What about the 4-fermions LEP generators ? YSFWW / RacoonWW / Gentle ?
- General purpose programs:
 - PYTHIA8 : "some" BES probably with some approximation
 - Whizard: extensively used by CLIC; BES implemented, good support.
 - Collection of Whizard steering cards used for the CLIC studies is available
 - Sherpa: work ongoing on "Sherpa for ee", with esp. a YSF resummation for ISRs.
 - Madgraph: no BES afawk

Alain: alternative hadronisation model, e.g. Herwig, for the Z production to begin with

- Can we run the Herwig hadronisation model with the MCs listed above?

1 Samples at √s = 91 GeV

1.1 Inclusive fermion pair samples

- Z/gamma* -> e+e, mu+mu-, tau tau
 - o Monte-Carlo: KKMC
 - o Tau tau : decay with TAUOLA
 - o BES ?? if yes, link to example steering card/file with BES ?
- Z/gamma* -> uds, bb, cc
 - o Monte-Carlo: KKMC
 - o Produces unfragmented LHE events (frag/had. Done later in the Pythia interface)
- gamma gamma -> I+I-, ggbar
 - O What is the state of the art, PYTHIA?
 - Link to steering file? which m II cut?
 - o Include only EPA photon flux ? or also photons from beamstrahlung?

1.2 Exclusive fermion pair samples

- Z/gamma* -> tau tau with tau -> mu gamma
 - KKMC, tau decays selected by Tauola, one leg (eg tau-) into mu gamma, the other leg inclusive.
 - Link to steering file ?
- Exclusive samples for flavour studies
 - Combination of Pythia + EvtGen
 - Possible to combine with KKMC?
 - List of samples to be defined.
 - Starting point: the samples here:
 http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_fccee_tmp.php, namely:
 - Bu2D0Pi , Bd2D0PiPi, Bs2TauTau, Bs2TauTau (Tau -> had), Bd2KstarTauTau, Bd2KstarTauTau (Tau -> had), Bd2KstarEE, Bd2MuMu, Bd2DstarTauNu, Bd2DstarTauNu (Tau -> had), Bd2DTauNu, Bd2TauNu (Tau -> had), Bd2KsPi0, Bs2PhiGamma, Bc2TauNu, Bc2TauNu (Tau -> had), D2PiPi0, Bs2DsK
 - To be added (Stephane):
 - backgrounds for B2K*tautau
 - LFV companions like b —> s tau mu.
 - Bs2Dslnu and backgrounds for a_SL^s,
 - Bs2DsK (w/ several Ds decays), Bs2J/Psiphi (Roy: also Bs2JPsiEta), and Bs2phiphi. And a set of backgrounds, to be devised. More information below from Roy.
 - Bs2mumu and B02pipi (to complete the already existing B02mumu)
 - Bu2taunu and backgrounds (to complete Bc2taunu)
 - Also add Bs to gamma gamma (Roy) excellent test for calorimetry
 - Background: B0 -> gamma gamma
 - For Bs —> Ds K (Roy):
 - Signal: Ds -> Phi pi and Ds -> Phi rho, with Phi -> KK, and rho -> pi pi0
 - Exclusive backgrounds:
 - o B0 -> Ds K : same decays as above for the Ds
 - Bs -> Ds Pi : same decays as above for the Ds
 - Bs -> Ds* K : Ds* -> gamma Phi pi and Ds* -> gamma Phi rho, same decays as above for the Phi and the rho
 - Bs -> Ds K*: as above for the Ds, K* -> K pi0
 - o Bs -> Ds rho : Ds -> Phi(KK) pi and rho -> pi pi0
 - Lambdab -> Ds p : same decays as above for the Ds
 - LambdaB -> Ds* p : Ds* -> gamma Phi pi and Ds* -> gamma Phi, same decays as above for the Phi and the rho
 - For Bs -> JPsi Phi (Roy):
 - Signal: JPsi -> mumu, ee, or eegamma, Phi -> KK
 - Exclusive backgrounds:

- Lambda -> JPsi K p : same JPsi decays as for the signal
- For Bs -> JPsi Eta (Roy):
 - Signal: JPsi -> mumu, ee, or eegamma, Eta -> gamma gamma
 - Exclusive backgrounds :
 - o B0 -> JPsi Eta: same JPsi and Eta decays as for the signal

1.3 Others

- ee -> gamma gamma
 - o BhabhaYagga?
- Alain: Z -> W W* (background to HNLs)
 - Which generator ? LEP times: Gentle / RacoonWW / YFSWW

2 Samples at WW

- Z/gamma* -> e+e, mu+mu-, tau tau, uds, bb, cc
- ee → gamma nu nubar
 - o KKMC which phase space cuts for the photon ? steering card ?
 - About 5% efficiency to have a photon outside the beam pipe (5deg and 10% beam energy). Should be fast now.
- ee \rightarrow Z nu nubar
 - o Note: this does not exist in Pythia
 - Could use Whizard, or dedicated LEP generator (Patrick, wrote the LHE output)
 - Total x-section: good agreement between the two
 - Distributions are now in good agreement too.
- ee \rightarrow W e nu
- $ee \rightarrow Zee$
 - These two processes above were (partially) in Pythia6 (ISUB = 35, 36), but not in Pythia8?
 - Could use Whizard, or KORALW has them
- ee -> gamma gamma

3 Samples at \sqrt{s} = 125 GeV

- Z/gamma* -> e+e, mu+mu-, tau tau, uds, bb, cc
- ee \rightarrow Z nu nubar
- ee → W e nu
- $ee \rightarrow Zee$
- ee \rightarrow H with H \rightarrow gg ; H \rightarrow bb ; H \rightarrow cc ; H \rightarrow tau tau; H \rightarrow gamma gamma ; H \rightarrow Z Z ; H \rightarrow WW
 - Pythia8 for s-channel good enough
- diboson production: ee → WW, ee → ZZ, gamma gamma

4 Samples at √s = 240 GeV

- Z/gamma* -> e+e, mu+mu-, tau tau, uds, bb, cc
- ee → Z nu nubar
- $ee \rightarrow We nu$
- $ee \rightarrow Zee$
- $ee \rightarrow ZH$
- diboson production: ee → WW, ee → ZZ
- ee → H nu nubar
- ee → tq~, t~q (semi-leptonic top decay; top-FCNC_Lag, define q = u c, define q~ = u~ c~)
- e- e+ > Z l+ l- (hadronic decay of Z)
- e- e+ > W+ j j (leptonic decay of W)
- e- e+ > HZ; H->WW (both leptonic and hadronic decays of W)

_

- ee → tq~, t~q (hadronic top decay; top-FCNC_Lag, define q = u c, define q~ = u~c~)
- e- e+ > WW (hadronic decay of W)
- e- e+ > Z j j (hadronic decay of Z)
- e- e+ > HZ (hadronic decay of H)

•

5 Samples at \sqrt{s} = 365 GeV

```
• Z/gamma* -> e+e, mu+mu-, tau tau, uds, bb, cc
• ee \rightarrow Z nu nubar
• ee \rightarrow W e nu
• ee \rightarrow Zee

 ee → t tbar

• ee \rightarrow ZH

    ee → H nu nubar

    diboson production: ee → WW, ee → ZZ

    Do we want separate exclusive samples?

    ee → tq~, t~q (semi-leptonic top decay; top-FCNC Lag, define q = u c, define

   q \sim = u \sim c \sim

    Madgraph: produce LHE privately

• e- e+ > Z I+ I- (hadronic decay of Z)
• e- e+ > W+ j j (leptonic decay of W)
• e- e+ > HZ; H->WW (both leptonic and hadronic decays of W)
• e- e+ > t t~ (semi-leptonic top decay, both leptonic and hadronic decays of W)
• e- e+ > t W-j, t~ W+ j (semi-leptonic top decay, both leptonic and hadronic decays of W)
• ee \rightarrow tq\sim, t\simq (hadronic top decay; top-FCNC Lag, define q = u c, define q\sim =
   u~ c~)
• e- e+ > WW (hadronic decay of W)
• e- e+ > Z j j (hadronic decay of Z)
• e- e+ > HZ (hadronic decay of H)
• e- e+ > t t~ (hadronic top decay)
• e- e+ > t W-j, t~ W+ j (hadronic top decay)
```