Engineering Project: CANDLE CONVECTION

EW	heading	table #

Prototype Pattern

Start cutting here

Objective: Design, observe, and modify a structure made from auminum foil that rotates by using the convection currents from a candle.

Materials:

Candle apparatus (candle, candle holder, ~25cm skewer stick, tape), aluminum foil, scissors, timer, lighter (monitored by teacher).

Procedure:

- Use the prototype pattern to draw a spiral design on a piece of aluminum foil. Cut along the drawn curve. Try to keep the aluminum foil as smooth as possible.
- Make a triangular dome in the center of the aluminum and place it on top of the pointy end of the skewer stick. Try not to let the skewer poke a hole through the foil. Your aluminum structure should barely rest on top of the skewer.

- 4. Count the number of revolutions. One complete revolution is each time the bottom tip of the aluminum foil passes a reference point (the skewer's vertical position is a good reference). Use a timer to record the time it takes to make 10 revolutions.
- 5. To calculate the speed of your structure, divide the number of rotations by the total time it takes to complete them. Use seconds for time.
- 6. Think of a change (or changes) that will improve your structure and increase the speed. Use a new piece of aluminum foil to create your revised design. Sketch your new structure and label the changes.
- 7. Test your new structure and record the time to complete 10 revolutions. Calculate the speed as you did in Step 5.

Data:

Convection Structure Comparison

Prototype Sketch		Revision Sketch with Labels	
Time to complete 10 rotations (sec)	Speed (rot/sec)	Time to complete 10 rotations (sec)	Speed (rot/sec)

Analysis: Construct a bar graph that compares the speed of your prototype to your revised design.

Conclusion:										
1. Explain								ir, cano	lle, curi	rent in your
answer.										
2. Did your revisions improve the speed? Make one inference as to why or why not:								or why not:		