
Opening a Linux Kernel​
in CLion IDE 

​​Installing the build tools 
Before you start, it’s a good idea to make sure you have all the necessary prerequisites 
installed, and that you can build the kernel from your console (without CLion). On 
Debian/Devuan/Ubuntu Linux systems, you need to 
run apt-get install build-essential as root. 

​​Getting the source code 
Next, head to https://www.kernel.org and pick a 4.x or 5.x kernel tarball. Building an 
ancient 2.2.x or 2.4.x kernel on modern systems is possible, but may require extra 
tinkering. Alternatively, you can pull the most up to date Git master from 
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git. 

​​Bootstrapping 
Now you need to make sure the project is both clean (meaning it doesn’t contain any 
binaries that have already been built from source) and ready for build (meaning you’ve 
carried out all required configuration steps): 

●​ make distclean is necessary as it removes any previously built binaries and 
object files; 

●​ make defconfig creates the default .config file in the project directory. You can 
go ahead and copy over the .config from your running Linux kernel, or run 
make menuconfig instead and make any customizations (like enabling a specific 
driver or file system module, e.g. Btrfs); 

●​ running make clean after this is still desirable, as make defconfig and 
make menuconfig both build a small number of binaries; 

●​ don't run make distclean once you have the .config file, as it will get deleted 
and you'll have to start over. 

●​ don't build the kernel manually (make bzImage and/or make modules) once 
you've run make clean, as CLion needs a clean project state. 

To summarize the above, use this shell one-liner and you’ll be all set: 

make distclean defconfig clean 

​​Creating a CLion project 
Now we're ready to open the kernel in CLion (note you need version 2020.2+). 

https://www.kernel.org/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://www.jetbrains.com/clion/


But first let's adjust the memory settings. This step is probably unnecessary if you only 
intend to build the kernel (make bzImage). But if you want to run make modules too 
(and you probably do), then increasing the heap size of the JVM is a good idea. Navigate 
to Help → Change Memory Settings and set the heap size to 4096 MB, or if you can, 8192 
MB: 

 

Once you’ve started CLion with the new memory settings, open Makefile from the 
project root: 

 

 



and select “Open as Project”: 

 

Next, CLion will ask whether you want to clean the project. Accept the defaults, and CLion 
will run make clean before analyzing the project structure: 

 

 



After a short while, the build tool window will tell you that the project analysis is complete. 
There will be multiple warnings, from both GNU Make and CLion itself, but you can ignore 
those: 

 

Indexing symbols will take quite some time: 

 

 



At this point, CLion has used the default Make targets to analyze the project. Let’s adjust 
these values. Navigate to File → Settings → Build, Execution, Deployment → Makefile: 

 

The Arguments field contains the Make switches used to analyze the project. Since the 
Linux kernel uses the Kbuild build system on top of GNU Makefiles, let’s add V=1 for extra 
verbosity: this will aid CLion in analyzing the project. This is not mandatory for the kernel, 
but will definitely help a lot with other Kbuild-based projects, such as QEMU, BusyBox, Git 
or Apache NuttX. 

Also, 

--just-print --print-directory --keep-going 

can be shortened to -nwk, so the resulting Make arguments will look like this: 

 

The all make target is just an alias for bzImage, so by default the project will include the 
kernel image but not the modules. Let’s correct this (note the uppercase I in bzImage): 

https://www.kernel.org/doc/html/latest/kbuild/index.html
https://github.com/qemu/qemu
https://github.com/mirror/busybox
https://github.com/git/git
https://github.com/apache/incubator-nuttx


 

Here’s the overall view of the settings panel with all our changes: 

 

 



In order for our changes to be applied to the project, invoke Tools → Makefile → Reload 
Makefile Project. The project will be reloaded with the updated settings applied: 

 

If you modify any kernel flags, updating your .config file, this is the action you should 
invoke in order for CLion to reflect the changes. 

​​Troubleshooting 
If Makefile support in CLion doesn’t work for you, feel free to contact us at 
clion-support@jetbrains.com. 

You can also try opening the Linux kernel as a compilation database project instead. You’ll 
need a compilation database generator like compiledb or bear (bear is best for the 
Linux kernel). 

Just as you did with Makefile, run 

make distclean defconfig clean 

Next, from the project root, generate the compile_commands.json file by running 

bear make V=1 bzImage modules 

This will take a while, as the whole project will be built. 

Finally, open the resulting compile_commands.json as a project in CLion. 

mailto:clion-support@jetbrains.com
https://github.com/nickdiego/compiledb
https://github.com/rizsotto/Bear

	Opening a Linux Kernel​in CLion IDE 
	​​Installing the build tools 
	​​Getting the source code 
	​​Bootstrapping 
	​​Creating a CLion project 
	​​Troubleshooting 

