

A Practical Guide On Normal
Mapping for Games.

by Alexey Oshchepkov
(Superfranky)

Introduction

This Guide is created for those, who want to

understand Normal Mapping. It’s written for newbies, who
want to get into game art and for veterans, who want to
freshen up on the subject. In this guide, I will try to
address every possible problem, and provide a concise and
easy-to-understand answer. I hope that this Practical Guide
will teach you everything there is to know about Normal
Mapping and its application in game art. Normal mapping
problems should not get in the way of your art!

Thanks goes to EarthQuake from Polycount for inspiring

me to create this guide.

Terms of Use

Please respect the work of the author and don’t copy

and paste it to websites other than Polycount without
my(Superfranky) permission. If you see a mistake or want to
see something added, please PM me on Polycount or send me a
message on networkcat2@hotmail.com.

Tech babble

In this chapter, I will try and provide all the

technical information related to Normal Mapping. I will
keep it as simple as possible and will not provide any
information that is not directly related to the process of
creating game art.

Normal Mapping, in 3d art, is a technique that is used

to fake the lighting of bumps and dents from the high
polygon object. It is used to make your game model appear
more like your high polygon model. It can be used to add
various details that you can’t possible model in low poly
due to the strict polygon limit of your project or add
smoothed edges to make your simple object look a bit
rounded to better catch lighting and look more realistic.

Normal maps are usually RGB images where the RGB

components (Red, Green, Blue channels) correspond to the X,
Y, and Z coordinates, respectively, of the surface normal.
Red channel of a tangent-space normal map stores the X axis
(pointing the normals predominantly leftwards or
rightwards), the green channel stores the Y axis (pointing
the normals predominantly upwards or downwards), and the
blue channel stores the Z axis (pointing the normals
outwards away from the surface)

Tangent Space

Before we get into any modeling and baking I have to

inform you about Tangent Space and what it means.

The usual type of a normal map that you can see

everywhere on the internet that looks all blue and pretty
is called Tangent Space Normal Map.

In 3d world there exist many different coordinate

systems: world space, object space, camera space etc.
Tangent space is just another coordinate system with its
own origin, it’s used to specify texture coordinates for a
polygon face. You are probably familiar with UV
coordinates, imagine X axis pointing in V direction and Y
axis in U direction. We have a coordinates of 2d space now.
But a coordination system needs 3rd axis to operate in a 3d
world, and that’s where normal of a face comes in. In

tangent space coordinates, a face normal (N) direction is
used for Z axis on the coordination system.

On this image you can see world coordinates in the bottom
left and tangent space coordinates attached to quad made of
two triangles.

This image helps visualize the coordinates on the more

common shape – a cube.
The u, v, n axis represent the direction in which u,

v, n values increase across the face, just as the x, y, z
values represent the direction in which the x, y, z values
increase in the world space coordinate system.

What it all means is that we can map RGB channels of
the normal map to match tangent space coordinates. Red
channel is responsible for U axis, Blue is for N axis and
Green is for V axis.

To simplify, Red is Left and Right; Green is Up and

Down, Blue is Outwards away from the surface.

If you see lighting coming from the wrong angle when

you're looking at your normal-mapped model, and the model
is using a tangent-space normal map, the normal map shader
might be expecting the red or green channel (or both) to
point in the opposite direction. To fix this either change
the shader, or simply invert the appropriate color channels
in an image editor, so that the black pixels become white
and the white pixels become black.

Man, this is hard. Why do I care?
Tangent Space normal maps use a special kind of vertex

data calculation called the tangent basis. Light rays are
in world space, but the normals stored in the normal map
are in tangent space. When a normal-mapped model is being
rendered, the light rays must be converted from world space
into tangent space, using the tangent basis to get there.
At that point the incoming light rays are compared against
the directions of the normals in the normal map, and this
determines how much each pixel of the mesh is going to be
lit. Alternatively, instead of converting the light rays
some shaders will convert the normals in the normal map
from tangent space into world space. Then those world-space
normals are compared against the light rays, and the model
is lit appropriately. The method depends on who wrote the
shader, but the end result is the same.

Problem for artists is that there are many different

ways to calculate tangent basis. Meaning that a normal map
baked in one application probably isn’t going to be shaded
correctly in another. When the renderer(game engine for
example) renders your model, the shader must use the same
tangent basis as your normal map baking application,
otherwise you will get incorrect lighting on your model,
especially across the UV seams.

I want my normals to look great and I don’t
want to do extra work!

There are plenty easy ways to ensure that normal maps

you bake will work as they should the game engine of your
choice. Let’s see some examples:

Xnormal:

This application bakes normal maps in tangent space

called Mikk-Tspace.

Applications that support Mikk-Tspace:

Unreal Engine 4
Marmoset 2

​ Marmoset 2 also supports maps baked in 3ds max and
Maya

For Unity engine you will have to install a custom Unity
tangent space plugin for Xnormal if you want to bake maps
in that application.
That’s just a few examples for using Xnormal. But what if
you need to use 3ds Max for baking and Unity engine for
displaying maps?

For situations, where don’t have a synchronized workflow,
there exists Handplane http://www.handplane3d.com/ . It’s a
freeware (completely free) software. You will have to bake
an Object Space normal map that will be converted to a
normal map with the tangent space you want.

http://www.handplane3d.com/

Disclaimer

Throughout this guide I will use a Synced Workflow: baking
normal maps in Xnormal and displaying them in Marmoset 2
with the appropriate tangent space selected in the settings
for a displayed object.

Creating a Normal Map Simple
overview

The process of creating a normal map is usually called

“baking”. To simplify the pipeline of creating a normal
map, it looks like this:

As you can see, the normal map is only capable of

faking the definition of high polygon object. It is not
capable of altering silhouette of your low polygon object.

Building High Poly

To create perfect normal maps you have to know how to

construct your high poly models to take full advantage of
normal mapping.

1. Edge Thickness

 If you want to represent edges from your high poly

model in the normal map, you should make them smoother. If
your high poly edges are too tight, then they won’t be very
visible on the normal mapped mesh, and you want your edges
to stay readable on every distance.

2. Sloped extrusions

Because of the way the projection of high poly details

on low poly works, the baking can’t catch what it can’t
see. So if you want to represent an extrusion on your
normal map, it should be slanted/beveled so it could be
seen on the flat plane from the front.

3. Intersecting geometry for combining in low
poly

It helps to constantly think about the final product

when you build a high poly mesh. It’s generally a good idea
to build a continuous low poly mesh when two objects never
animate or seen separately, like a belt on pants. It would
be a good idea to intersect or match closely pants and belt
together in high poly to build a continuous mesh around it
later. If two meshes don’t alight properly it can give you

errors in normal map in places where there are holes
between two meshes. Normal map can’t display what isn’t
there.

You should keep that in mind when you have to merge

two objects together in low-poly. In some cases it would be
a better idea to use interpenetrating meshes. In this
example I would have the little low poly cube intersecting
with the main cube. These meshes will have to be baked
separately.

4. Decimating

If you bring your high poly from Zbrush to other apps,

it would a good idea to decimate it first. There is no
clear rule about how much you can decimate before you break
the model, so it’s recommended to do some test bakes before
committing to anything. Most of the time decimating to 20%
provides a pretty good result for baking. If a model looks
good when decimated, then it’s probably will work for
baking.

5. Floaters

Floaters are high poly objects that act separately of

the main object and work as easy-to-add details for baking
a normal map. It’s a good way to fake geometry without
having to break underlying high poly model and it usually
saves a lot of time. Downside is that you have to adjust
your low poly model to accommodate floaters and it’s very
hard to place them on rounded or complicated surfaces, so
they are mostly used on flat planes. If you place your
camera directly in front of the floater object and you
can’t see visible seams, then it should work right when
baked.

It’s important for floaters that present indentations
to have flat corner edges. It’s a good idea to have
floaters places as close to the surface as possible.

6. When to model and when to paint

Sometimes modeling and placing high poly geometry,

whether it’s a floater or not, is a bad idea and a waste of
time. For example, floaters can be baked separately on a
flat plane and combined into the normal map in Photoshop.
That approach makes duplicating of objects very easy and
helps to avoid problems, when there’s not enough resolution
when you do bakes to clearly represent small objects.

This is just one of the methods to do that. If you are

baking your normal in PNG format it will save the map with
transparency.

Then you bring it to Photoshop, and combine with your

baked normal map and overlay. There are many ways to do
that:

Methods to combine normal maps

Preferred and the most accurate method of combining

normals would be:

http://www.polycount.com/forum/showthread.php?t=131819
This Photoshop plugin or this RNM Normal Map Combiner
http://farfarer.com/resources.htm . If you prefer to use
Substance Designer, there’s also this node that does the
same correct combining operation
http://forum.allegorithmic.com/index.php?topic=262.0

A few other methods, but they are not as accurate and

reliable:

 Quixel NDO2 software can do the process of combining

effortless, but it doesn’t work in every case.
You can do it manually in Photoshop using this method:

http://vimeo.com/95516153.
Crazybump also provides a feature to overlay normals.

http://www.polycount.com/forum/showthread.php?t=131819
http://farfarer.com/resources.htm
http://vimeo.com/95516153

Building Low Poly

1. Gradients

Before baking anything you have to understand the

concept behind normal map gradients. Where a normal map is

a light blue color (R/G/B: 128/128/255) it means that the
normal points in exactly the same direction as the
interpolated vertex normal at that pixel. When normal map
has to adjust to extreme changes in geometry, gradients
start to appear. The less normal map has to adjust the
normal, the better. But that doesn’t mean that gradients
are evil.

Let’s do a test. Just our regular test bake with a

cube. Every face of the cube was separated in UV layout and
each had a unique Smoothing Group applied to it:

Looks all pretty and blue, right? No gradients,

essentially a perfect bake! But what does it mean and how
to achieve that? Or a more interesting question: should I
bother?

What it means is that your normals point in the right

directions, no gradients, and the map doesn’t have to work
extra time to adjust for hard angles in your low poly mesh.
Practically, it’s a good idea to keep gradients in your
normal map as clean as possible.

Alright, let’s introduce some extreme gradients. I

stitched all UV islands together and applied 1 Smoothing
Group to the entire object.

It’s the same cube, but you can see that it’s way

different and scary looking now. I’ll tell you what it’s
all about a bit later. Now let’s see the difference between
two bakes:

This is the cube with extreme gradients in the normal

map. Clearly, the normal map has a hard time dealing with
90 degree corners of the cube.

And this shows how the map without extreme gradients

looks much better and clean.

But that doesn’t mean that you should avoid gradients

at all costs! Now way, that’s just not a good idea. The
most extreme gradients can provide an issue for you, but
most of the time you can get away with gradients,
especially if you normal map baking engine is synced with
your game engine. Most of the time you should do test bakes
to see what you can get away with in your particular engine
of choice, where you will present your game assets.

There are various benefits of having clean bakes, such

as:

You will get better results when doing LOD meshes that

share the same texture, because the normal map won’t have
to rely so heavily on the exact mesh normals. You may need
to have a separate normal map baked for LOD meshes
otherwise, which uses up more VRAM.

Better texture compression
Will reduce “resolution based smoothing errors” that

happen when you have a small triangle but not enough
resolution to properly represent the shading. These usually
show up as “little white triangles” in-game. In the same
regard it improves how well your normal map will display
with smaller mip maps.

2. Hard edges and UVs

So let’s say you don’t want gradients and need to have

clean and pretty bakes. Then you will have to introduce
hard edges to your low poly mesh. Each time you harden
edges on your lowpoly, the normal map will ease on the
gradients on that edge.

How to do hard edges:

In 3ds Max, you’ll have to use Smoothing Groups to

separate faces of your low poly mesh that you want to have
hardened. In polygon sub-object mode, select polygons and
apply a smoothing group to them from the menu at the very
bottom of the

Right now this mesh has 2 polygroups: 1 for the

selected face and 1 for every other face. You can see that
the faces that share a polygroup appear to have distorted
shading. If you can see that it will mean that your normal

map will show extreme gradients after baking. Let’s see how
that works.

You can see on this screenshot that one face became

separated from the rest. Keep in mind that I never did
anything with UVs, I only applied a different polygroup to
that face. Now the face is clean and pretty, but this is
how it appears in-engine:

Scary looking, huh? But, forget about the weird

looking side for now. If you look at the rest of the mesh
you can see that even separating one face from the rest
eased up the gradient in the normal map a bit not only for
the separated face, but it affected the faces that share
the edge with the hardened face too.

See? The faces changed the gradients. The bluer it is,

the better it will look in-engine.

So what about that weird looking… thing? That is an

issue that appears when you separate faces in smoothing
group, but don’t separate them in UVs. The face on the
layout can appear separated, but it’s not and that gives
you that peculiar result.

If you want to use hard edges, you have to separate

UVs where you have hard edges.

I separated the hardened face in UV

Did a rebake and this is the result:

Here, with transparency, you can see how the hardened

face really became separated from the rest and now nothing
is negatively affecting it and there is no issue in-engine.

Now if I apply a unique smoothing group to every other

face and detach their UVs I’ll get a perfect looking normal
map. But what if I have not 6 faces, but a lot more?
There’s an easy answer for that. Download
http://www.renderhjs.net/textools/ Textools plugin for 3ds
Max, it can do an operation called “Smoothing groups from
UV shells”.

Basic workflow for me looks like this:

1. Separate UVs where I want hard edges to be
2. Apply “Smoothing groups from UV shells” to apply

separate smoothing group for each separate UV island.

http://www.renderhjs.net/textools/

However, it’s very easy to become a victim of this
easy workflow. Sometimes you may not need separate
smoothing groups on UV shells. For example, if you have
mirrored UV islands or a rounded object that was unwrapped
to several UV shells, in situations like that you don’t
want to have breaks in smoothing groups.

3. Mirroring UVs

If you need to mirror half of your low poly mesh, a

good way to do it would be like this:

1. Delete half of your symmetrical mesh
2. Unwrap UVs
3. Apply Symmetry to the mesh
4. Offset UVs of the mirrored part
5. Bake normal map

Same offsetting is done when any two or more shells

share UV space. You have to offset them before baking,
otherwise there will be issues.

4. Roundness and waviness in normals

With rounded object, there is a persistent issue of

waviness in normal maps.

You can see “waves” on the edges of UV shells. They

happen when rounded low poly doesn’t conform properly to
the high poly.

So how do you get rid of these nasty issues?

A good way to fix this would be to add more

geometry/sides to the low poly cylinder.

​

After baking the mesh with more sides, you can delete added
edges and you’ll get a bit better result than just baking
with less sides. It’s not recommended, but it’s up to you.

5. Proper edge placement on retopology

When you do retopology, it’s important to place edges

where your high poly edges are, otherwise you will get
projection issues on baking and normal map will not be
displayed correctly. The cage creation will be harder too.

6. Triangulating

Because different baking and game engines triangulate

meshes differently on import, it’s important to triangulate
your low poly mesh before baking, so there would be no
shading differences between various applications.

In 3ds Max, it’s very easy to do it:

Select Vertices sub-object, press Ctrl+A to select all

vertices and hit Connect to triangulate. Use this
triangulated mesh for baking and for displaying in-engine.

7. Best UV practices for normal baking and
painting

It’s important to think about texturing process when

you do unwrapping. If you need to paint uniform straight
details on a belt, it’s important to have belt’s UV shells
straightened.

When thinking about stitching UVs you should think

about if that’s part of the mesh will be visible or not,
whether or not you can afford to have gradients in your
normal map for that part

8. Slanted details in bakes

With floaters, you have to keep in mind slanting of

those details in normal maps.

Low poly can also be constructed like that:

It gives you a similar result, but much faster. With

the expense of having more polygons/vertices in your low
poly mesh.

See how big a difference is in Box001’s polygon count

and verts after you add edge loops? So use this method on
your own risk.

In some cases it will help to just add a vertex in the

place where you have a floater.

9. What if I don’t want to add more polygons
to my low poly, but don’t want slanted
details either?

That’s an interesting question and there is an answer

for that!

Basically, you place edge loops to help with baking

floaters and delete them after baking. But, unfortunately,
that won’t work in every case.

First of all you have to decide how your gradients

will look on the normal map.

Do two bakes: one without extra edges and one with

them and see the difference in gradients in the normal map.

And this is what we get after adding edge loops to

help with baking:

They are practically the same. So why is that? Didn’t

I just add more loops? Thing is, control loops help ease
out gradients on baking and more, but in this case I
already had separated UVs and hard edges, so edge loops
didn’t have to do any work.

So why this is important? If I delete added edge loops

and apply normal map in-engine, this is what we get, a
perfect result. There’s no difference in normals between
the two meshes, but one of them has our desired polygon
count. Neat.

But now let’s do another test. This time I stitched

UVs and applied 1 smoothing group to the whole mesh, just
to introduce extreme gradients to the normal map.

Pretty nasty looking, right? Let’s see what happens

when you add edge loops to this mesh.

This one is obviously much better looking, this is

what we want! But after applying this normal map to two
meshes, this is what happens:

Wow, this is ugly! We broke something!

The thing is that gradients of two meshes became just

too different and when you delete extra edges, it doesn’t
understand how to adjust to it.

So what to do if I have gradients, but I don’t want to

do hard edges, split UVs etc.? There is a good way to do
it!

Method #1
It’s the easiest way to get rid of all the slanted details even in a mesh where other
methods prove to be very troublesome. It’s called a Skewmesh method and it works like
that:

That’s what we expected. Now let’s fix it.

1.​ Triangulate your low poly mesh.
2.​ Then apply Tesselate modifier on top of it

Make sure you have 0 in Tension slider and Iterations are 3 or 4

3.​ Then make a cage

4.​ Export tessellated low poly and its cage separately from the final geometry mesh
and import them to Xnormal.

5.​ In Xnormal, bake Object Space Normal map

6.​ Then convert this map to Tangent Space map, using your Object Space and your
final geometry mesh as inputs in the converter.

Done!

Method #2

1. Prepare two meshes: one without additional edge

loops (your final game model) and a baking model with edge
loops.

2. You will have to bake an Object Space Normal Map

instead of our usual Tangent Space Normal Map.

I will show the process for Xnormal. To bake Object

Space map you’ll need to uncheck the Tangent Space box in
Normal Map settings.

3. Choose your baking model (the one with edge loops)

and bake it.

This is how an Object Space map looks, it all weird

and yellow. But that is not important. What is important is
that it can be converted to Tangent Space map now.

4. Select Object/Tangent space converter

Load your final game model in Lowpoly mesh slot.

Object space map in Input and choose format in which you
want to save the final map.

This is our final result with all its gradients in

place. So, what the difference, ask you?

You see, now there’s no difference in normals of two

meshes. This is what happened:

The converter takes Object Space map that was baked

from baking mesh and created Tangent Space map with respect
of the shading from game model. Now you have all the
benefits of the edge loop baking without having to take
care of your gradients first!

Method #3

You can avoid going through that painful method by
doing this:

1.​Make hard edges for low poly and split UVs to relax

gradients
2.​Bake in Xnormal without a cage, use Ray Distance

Calculator for better results.

Now you have a clean bake without floater details being
slanted. Now you can just overlay the portion you need in
Photoshop or use the Object Space method written above if
you need to transfer bake to a differently smoothed low
poly mesh.

10. Overlapping UVs non-mirrored UV shells

Sometimes (or every often) you have a UV layout where you
see a lot of identical or near-identical UV shells and you
think “wow, that’s a waste of my precious UV space!”

Luckily, there’s a simple method to overlap UV islands that
belong to the same mesh and get acceptable results.

Let’s say you have a stretched cube.

If you separate every face in UVs to take advantage of hard
edges you will get 6 islands. This is what you see when you
bake it:

You can see how the islands look practically identical
here? One square island looks exactly like other three and
two stretched islands also look identical.

I really need all these islands? Let’s stack!

We will do that, but first you have to think about how

you are going to texture this asset. Do you need to have
unique texture details on every face? Is it important to
keep them separate for normal details, scratches etc.? Will
mirroring be easily seen?

If you decided to overlap islands, then the process is

actually very easy, thought there are things that you
should keep in mind working with overlapping.

1.​Keep in mind the direction of faces you overlap.

Especially with simple square faces like that it’s
easy to rotate them unintentionally and so your
textures will be inverted where you don’t need it.

2.​Overlapping UV islands is very easy. In 3ds Max you
just need to make sure you have Snap activated.

The icon at the very right bottom of the UV Editor
window.

Then you snap two shells together by selecting Select
by Elements and dragging one island to another to match the
vertices. Done.

3.​Offset UVs to the near 1-0 space

4.​Bake

A clean and good looking result. I applied a quick
normal map for the second screenshot so you could see how
it looks like.

But what if my islands are not identical, but I

want them to overlap?

You can do that, but you have to be extra careful with

that. You have two choices when it comes to overlapping UVs
in that case:

Stretching one island to match another:

This works fine with a simple square UVs, but will probably
be an issue if you try to stretch something more complex
and it introduces UV skewing and stretching in the process.
Try it and see for yourself. You also have to be aware,
that scaling and stretching an island makes it a different
size, so it takes unproportionate amount of texture space
and you get this:

Left- stretched UV; Middle – original UVs; Right – one
island inside another

You can see that the size of normal details on the left is
different from the original UV layout. It can be used to
your advantage, if you are smart about it. Just be aware of
this when you overlay your islands.

Then you have this, positioning one small island inside the
one bigger.

This is what you get for doing this

Because the small island doesn’t share the same edge
normals, it can’t properly display them in-engine and so
you get a nasty looking very hard edge.

Baking

Reset Transforms

Before baking, make sure your low-poly model's transforms have been reset. This is very
important! Often during the modeling process a model will be rotated and scaled, but
these compounded transforms can create a messy local "space" for the model, which in
turn often creates rendering errors for normal maps.
In 3ds Max, use the Reset Xforms utility then Collapse the Modifier Stack. In Maya use
Freeze Transformation. In XSI use the Freeze button.

Edge Padding

If a normal map doesn't have enough Edge Padding, this will create shading seams on
the UV borders.

Normal direction

Before doing any bakes, makes sure that both your HIGH POLY and LOW POLY have
correct normal directions, i.e. no inverted faces. In 3ds Max you can check that by
turning on Face Direction and selecting a mesh. Inverted faces will be colored green. If
you have inverted faces you will get all kinds of projection issues, so be careful!

1. The whole process

When baking a normal map, to take advantage of hard

edges you will have to use a projection cage. There are a
few ways to do that, I will show only 3ds Max and Xnormal
ways to do that.

http://wiki.polycount.com/wiki/Edge_padding

In 3ds Max:

Apply a Projection modifier to your low poly mesh

Here you can see how the cage completely covers the

high poly mesh AND the floaters. It is very important that
the cage covers everything, otherwise you will get
projection errors.

In Push many adjust the Amount to push the cage

outwards from your mesh. The Amount = the distance. You can
also adjust the cage manually, by entering the sub-object

mode for Projection modifier. In 3ds Max, cage affects
distance of the projection and the direction, so moving
vertices by hand can be tricky and non-reliable.

Xnormal:

You can create a cage for your mesh directly in

Xnormal. For that you’ll need to enter 3d Viewer

Check Edit Mesh box and edit the cage. Save meshes

when done.

But it’s not an ideal way to make cages, because you

have to switch applications and the controls in 3d Viewer
can be tricky.

Instead, you can import cage from 3ds Max.

Press Export and it will create a separate Cage mesh

for you to export. Export it as .obj and open Xnormal.

Click with RMB on your low poly mesh and select Browse

external cage file, choose your exported cage object from
3ds Max.

Troubleshooting

Even with an in-depth guide in your hand, it’s very easy to
make mistakes when it comes to baking normal maps. In this
section I will show you how to prevent many of them and how
to solve common and uncommon problems.

Be prepared

If you have encountered a problem that you don’t know a
solution for, don’t panic. Take these simple steps to
ensure you properly prepared your mesh for baking. I will
demonstrate that using 3ds Max, but these steps can be used
in other modeling applications.

1.​Make sure normals on your low poly and high poly
meshes face in the right direction and aren’t
inverted. There are many ways to do that.

2.​Make sure your low poly mesh has no topology issues.
Check the mesh for any possible mistakes – unwelded
vertices, overlapping faces, inverted faces, isolated
faces, ngons etc. In 3ds Max you can apply STL Check
modifier to quickly check for common problems and
there’s Xview feature in 3ds Max that helps to see
various problems.

3.​Collapse modifiers in your mesh (delete history in
Maya)

4.​Make sure your mirrored/overlapped UVs are offset to

the near 1-0 space

5.​Do Reset Transforms

6.​Apply smoothing groups again

7.​Triangulate

8.​Create cage

9.​Export low poly mesh as .obj or .fbx with Smoothing
Groups, Normals, Tangents(option for .fbx) and Texture
Coordinates

That’s pretty much what you need to do to ensure your mesh

is 100% ready to be baked.

Let’s take a look at some specific problems when it
comes to normal maps.

1.​I did everything right, but I can still see the

seams on my normal map!

This is a perfectly baked mesh, except one little detail.
When you have strange seams like that and you’ve done all
the necessary steps correctly, you likely missed one
important detail. Padding. This is a simple cube baked in

1x1k resolution, but

UV islands had only 1 pixel of edge padding in bakes. Try

to change padding to 8-16 pixels, depending on the desired
texture resolution and amount of Anisotropic Filtering in
your engine.

Rebaked with 8 pixels of padding.

2.​ I have weird noise on the surface of my
meshes after I applied a normal map.

The reason you see this problem is due to lack of bit-depth
precision. It’s not something you have to think about most
of the time, because it can be easily avoided. There are
two typical ways that renderers deal with this:​
​
1. Adding noise or dithering, this removes the artifact
that you see, but it adds noise to the texture. This is
what max does and is why you don't see the same problem​
2. No dithering but then you get this sort of
stair-stepping artifact, this is what Maya and Xnormal do.​

Do test bakes in .tga and if you encounter this issue then
do the next step:​
Bake your normal map in a 16 or 32 bit per channel
format(.tiff for example), then import in Photoshop and

export as .psd or other 8bit formats like .tga. It will
help to get rid of this issue.

3.​ My bake is yellow, should be blue! What am I supposed to do?

If you’ve done all the necessary steps from “Be Prepared” section you would never get
this issues in the first place. But in case it slipped your mind, this problem appears when
you have inverted normal direction in your high poly, fix it and rebake.

Painting:

1. Fixing normals by hand, do or don’t

Sometimes you encounter waviness in your normal maps,

projection errors or gradients and you don’t want to fix
your low poly or create a proper cage. There is an option
of fixing your mistakes in Photoshop by smudging and
cleaning the normal map. But, ultimately, it’s a
destructive workflow. What if someone asks you to change
your mesh and you’ll have to do rebakes? Are you going to
fix it all by hand again? If you prepare and work smart
with your high poly and low poly, then you won’t have to do
that extra work.

2. How to add details to normal map

Okay, I baked a mesh, but there are no details. I need

to add fabric definition to the normal map or other
details, how do I do that?

There are a lot of ways to create normal map details.

Simple way is to convert a height map to normal map with
the help of Nvidia normal plugin in Photoshop or use other
applications like Njob, Knald, Xnormal, NDO2, Substance
Designer.

Height map is a greyscale map.

In converting height map to normal map you have to

think about what values in this map mean. Everything that
is darker than Middle Gray is treated like indents and
everything lighter as peaks. You don’t have to use Middle
Gray at all, but if you don’t then you can’t separate
indents from peaks easily.

Gray = middle layer

Using this technique you can convert any grayscale

image to a normal map.

If you want to overlay your generated normals on top

of baked normals, all you have to do is overlay it smartly

on top.

You can do it manually in Photoshop using this method:

http://vimeo.com/95516153.
Crazybump also provides a feature to overlay normals.
You can also try this handy Photoshop script, but it

might not work on your version of Photoshop:
http://www.polycount.com/forum/showthread.php?t=131819

​ 3. Software for painting normals, 2d and
3d

With the help of Quixel NDO2 and Substance Painter,

generating and painting normal details became a breeze.
NDO2 is a handy plugin for Photoshop that allows you to
paint directly on the normal map and quickly generate
normals using everything Photoshop can offer.

http://quixel.se/dev/ndo

Substance Painter is a 3d painting application that

allows you to paint directly on your low poly mesh and
affect all kinds of things from normals to diffuse texture
at the same time.

http://www.allegorithmic.com/products/substance-painte

r

http://vimeo.com/95516153
http://www.polycount.com/forum/showthread.php?t=131819
http://quixel.se/dev/ndo
http://www.allegorithmic.com/products/substance-painter
http://www.allegorithmic.com/products/substance-painter

	Introduction
	Terms of Use
	Tech babble
	Tangent Space
	Man, this is hard. Why do I care?
	I want my normals to look great and I don’t want to do extra work!

	Disclaimer
	Creating a Normal Map Simple overview
	Building High Poly
	1. Edge Thickness
	2. Sloped extrusions
	3. Intersecting geometry for combining in low poly
	4. Decimating
	5. Floaters
	6. When to model and when to paint
	Methods to combine normal maps

	Building Low Poly
	1. Gradients
	2. Hard edges and UVs
	3. Mirroring UVs
	4. Roundness and waviness in normals
	5. Proper edge placement on retopology
	6. Triangulating
	7. Best UV practices for normal baking and painting
	8. Slanted details in bakes
	9. What if I don’t want to add more polygons to my low poly, but don’t want slanted details either?
	Method #1
	Method #2
	Method #3

	10. Overlapping UVs non-mirrored UV shells
	I really need all these islands? Let’s stack!

	Baking
	Reset Transforms
	Normal direction
	1. The whole process
	Troubleshooting
	Be prepared

	Let’s take a look at some specific problems when it comes to normal maps.

	The reason you see this problem is due to lack of bit-depth precision. It’s not something you have to think about most of the time, because it can be easily avoided. There are two typical ways that renderers deal with this:​​1. Adding noise or dithering, this removes the artifact that you see, but it adds noise to the texture. This is what max does and is why you don't see the same problem​2. No dithering but then you get this sort of stair-stepping artifact, this is what Maya and Xnormal do.​
	Do test bakes in .tga and if you encounter this issue then do the next step:​Bake your normal map in a 16 or 32 bit per channel format(.tiff for example), then import in Photoshop and export as .psd or other 8bit formats like .tga. It will help to get rid of this issue.
	Painting:
	1. Fixing normals by hand, do or don’t
	2. How to add details to normal map
	​3. Software for painting normals, 2d and 3d

