
Scaling well with others
Technical solutions to some of the problems of a

moderately-sized team

1. CI server #0: The build is broken!
2. Dev #0: Works for me.
3. Devs #1, 2, and 3: Works for us.
4. Devs #4, 5, and 6: The build is broken!
5. CI servers #1 and 2: Works for us.
6. <2 hours of head scratching>
7. Dev #4: What compiler version is everyone using?
8. <collective facepalm>

A true story

Word of mouth is no
longer good enough

Possible Solutions
● Be extra sure to tell everyone which compiler version to use
● Send a strongly-worded email
● Send MULTIPLE strongly-worded emails
● Put it in the wiki
● Don’t rely on the Dumb Human™

Check compiler version at build time (project.hxp)

 if (environment["haxe_ver"] != "3.4.7") {

 Log.error("Incorrect compiler version, expected 3.4.7");

 }

Check compiler version at build time (project.xml)
<!-- Enforce haxe compiler version. -->

<set name="req_haxe_ver" value="3.4.7"/>

<!-- perform the comparison that will be checked -->

<set name="wrong_haxe_ver" value="${haxe_ver} != ${req_haxe_ver}"/>

<error value="Wrong compiler version ${haxe_ver}. Expected ${req_haxe_ver}"

 if="$${wrong_haxe_ver}"/>

Haxelibs

Don’t do this

<haxelib name="libname"/>

-lib libname

project.xml

HXML

Specify your haxelib versions

<haxelib name="libname" version="1.0"/>

-lib libname:1.0

project.xml

HXML

● Every dev has to run haxelib every time we upgrade or add a haxelib
● Must update every CI machine
● Can’t easily take fixes without a new release of the library
● Git versions come with their own problems

More haxelib problems

Our solution
● Commit haxelibs to the project repository
● Everyone gets updates with git pull / svn update / etc.
● Hotfixes are easy to patch in
● Benefits to versioning dependencies

○ Avoids network-based build breaks
○ Business continuity
○ Troubleshooting

Project-local haxelib repository
● $> haxelib newrepo
● Creates .haxelib directory in current directory
● haxe and haxelib will use the .haxelib dir as their haxelib repo

Caveats of a local haxelib repo
● Local repo is only used if .haxelib dir is in the dir a command is run from

● Not all haxelibs handle a local repo properly
○ <setenv name="HAXELIB_PATH" value=".haxelib" />

● Duplicate copies of haxelibs with multiple projects or checkouts

○ <haxelib repository="../shared/.haxelib" />

● Libs with binaries can bloat your repository

● Someone still has to manage it all

Haxelibs that use external tools
● Node.js and packages are a good example
● We put all that in source control too
● Has worked very well for us

Downsides to tools in source control
● Binaries in source control can be problematic
● Some things might assume a global tool install

Haxe Completion Server

● Serves as a compiler cache
● Cuts our build times by 30%
● haxe -v --wait 6100

● haxe --connect 6100 myproject.hxml

● openfl build html5 --connect 6100

Haxe Completion Server

Use the completion server by default

--connect 6100

HXML

haxeflags.push("--connect");

haxeflags.push("6100");

<haxeflag name="--connect" value="6100" />

project.hxp

project.xml

Use the completion server by default

$> openfl build html5

Fatal error: exception Failure("Couldn't connect on
127.0.0.1:6100")

Tell the user about it

<echo value="Connecting to haxe completion server on port 6100"/>

Log.info("Connecting to haxe completion server on port 6100\n" + "If

you haven't already, open a new terminal and run 'haxe --wait 6100'

and re-run your build");

project.hxp

project.xml

Completion server pain points
● Annoying
● Port conflicts

○ var port = !defines.exists("hxport") ? "6000" :

 defines.get("hxport");

haxeflags.push(port);

● CI environment
○ if (!environment.exists("HX_NO_CONNECT")) {

 haxeflags.push("--connect");

 haxeflags.push("6100");

 }

Questions?

