

Yashoda Technical Campus

Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC
NH-4, Wadhe, Satara 415011 Email: principalengg_ytc@yes.edu.in Call: O2162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Electrical Engineering

Que.No	Question	Mark	Unit	СО	BL
Que.No	Which among these HVDC first projects are commissioned	IVIAIK	UIIIL	- 60	DL
1	in India? (A) Rihand – Delhi HVDC (B) Vindhyachal Back to Back only (C) Chandrapur only (D) Pugalur-Truchipalam-Panipat	01	1	504_1	L3
2	Which type of HVDC link can provide the more than half the rated power transfer capacity under the fault (A) Homopolar (B) Bipolar (C) Monopolar (D) Unipolar	01	1	504_1	L3
3	AC Power system gained much popularity because of (A) Transformers invention (B) Poly phase circuits invention (C) Induction motor invention (D) All of these	01	1	504_1	L3
4	Which of the following HVDC scheme is much better as far as the cost of cable is the concern? (A) Monopolar (B) Bipolar (C) Homoploar (D) Back to Back	01	1	504_1	L3
5	Thyristor valve offers (A) High Maintenance (B) High Power Loss (C) Free from arcs (D) Limited V & I ratings	01	1	504_1	L3
6	Negative polarity on the line in HVDC scheme helps to reduce	01	1	504_1	L3

We, at Department of Electrical Engineering, are committed to achieve our vision byM1: Preparing technically and professionally competent engineers by imparting quality education
through effective teaching learning methodologies.
M2: Developing professional skills and right attitude among students that will help them to succeed
and progress in their personal and professional career.

M3: Inculcating moral and ethical values in students with concern to society and environment.

Yashoda Shiskshan Prsarak Mandal's

Yashoda Technical Campus Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011

Email: principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Electrical Engineering

	(A) Power Factor	<u> </u>		<u> </u>	
	(B) Reactive Power				
	(C) Line Reactance				
	(D) Corona loss.				
	"Statement: Corona is violet glow, hissing				
	noise and ozone formation phenomenon.				
	Assertion: DC lines have no corona"		1	504_1	
7	(A) Statement is correct, assertion is wrong				L3
'	(B) Statement is wrong, assertion is correct	01			
	(C) Both are correct				
	(D) Both are wrong				
	Which of the following section is more costly to setup HVDC				
	link? (A) Converter Transformer				
8	(B) Civil Works Buildings	01	2	504_2	L3
	(C) Valves				
	(D) Engineering				
	Why dont we prefer the HVDC link for the short distance				
	transmission?				
9	(A) Huge Filters required				
	(B) Audio Frequency Interference	01	2	504_2	L3
	(C) Complexity of Control				
	(D) Not economical				
10	Overload Capacity of High VoltageTransmission line for ?				
	(A) HVDC is more	01	2	504_2	L3
	(B) HVDC is less (C) HVAC is more			JU4_2	LJ
	(D) HVAC is liess				
11	HVDC transmission has as compared to	01	2	504_2	L3
	HVAC transmission.			JU-1_2	

Mission of the Department

We, at Department of Electrical Engineering, are committed to achieve our vision byM1: Preparing technically and professionally competent engineers by imparting quality education
through effective teaching learning methodologies.
M2: Developing professional skills and right attitude among students that will help them to succeed
and progress in their personal and professional career.

Yashoda Shiskshan Prsarak Mandal's

Email: principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775 **Faculty of Engineering**

_	Department of Electrical I	Engine	eerir	<u>ıg</u>	
	(A) smaller transformer size				
	(B) smaller conductor size				
	(C) higher corona loss				
	(D) smaller power transfer capabilities				
	When continuous ground currents are inevitable thensystem is preferable. (A) Monopolar				
12	(B) Homopolar	01	2	504_2	L3
	(C) Bipolar				
	(D) Back to Back				
13	Which of the following are pros of HVDC over AC: (A) Absence of Capacitance (B) Absence of inductance (C) Absence of phase displacement (D) All of these	01	2	504_2	L3
14	Symmetrical monopole converters are earthed with impedance: A. Zero B. Low C. Infinite D. High	01	2	504_2	L3
15	The main objective of the smoothing reactor (A) To reduce the risk of commutation failure (B) Prevent the resonance in the DC circuit (C)To smooth the ripple current in DC (D) All of these	01	3	504_3	L3
16	The most popular device used for HVDC system are: (A) Thyristors (B) MOS devices (C) IGBT (D) GTO	01	3	504_3	L3
17	Power is transferred from system A to system B by an HVDC link as shown in the figure. If the voltage VAB and VCD are as indicated in the figure, and I > 0, then	01	3	504_3	L3

Mission of the Department
We, at Department of Electrical Engineering, are committed to achieve our vision byM1: Preparing technically and professionally competent engineers by imparting quality education through effective teaching learning methodologies.
M2: Developing professional skills and right attitude among students that will help them to succeed and progress in their personal and professional career.

Yashoda Shiskshan Prsarak Mandal's

Email: principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Flectrical Engineering

	Department of Electrical I	<u> Engine</u>	een n	19	
	AC System A Rectifier A Voc B ExamSide.Com Inverter				
	(A) VAB > 0, VCD >0, VAB > V CD				
	(B) VAB > 0, VCD >0, VAB < V CD				
	High Voltage DC (HVDC) transmission is mainly used for				
18	(A) Interconnecting two systems with the same nominal frequency	01	3	504_3	L3
	(B) Eliminating reactive power requirement in the operation				
	(C) Bulk power transmission over very long distances				
	(D) Eliminating Active power requirement in the operation				
	Fault on a two terminal DC link is removed by ? (A) Breakers on DC side				
19	(B) Current control of converters	01	3	504_3	L3
	(C) Breakers on AC side				
	(D) Magnesium				
	Out of the following which multipulse converter is mostly used in HVDC?				
	(A) 6-pulse converter				
20	(B) 18-pulse converter	01	3	504_3	L3
	(C) 12-pulse converter				
	(D) 7-level multilevel inverter				